Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Billions of people rely upon groundwater for drinking water and agriculture, yet predicting how climate change may affect aquifer storage remains challenging. To gain insight beyond the short historical record, we reconstruct changes in groundwater levels in western North America during the last glacial termination (LGT, ~20 to 11 thousand years ago) using noble gas isotopes. Our reconstructions indicate remarkable stability of water table depth in a Pacific Northwest aquifer throughout the LGT despite increasing precipitation, closely matching independent Earth system model (ESM) simulations. In the American Southwest, ESM simulations and noble gas isotopes both suggest a pronounced LGT decline in water table depth in in response to decreasing precipitation, indicating distinct regional groundwater responses to climate. Despite the hydrologic simplicity of ESMs, their agreement with proxy reconstructions of past water table depth suggests that these models hold value in understanding groundwater dynamics and projecting large-scale aquifer responses to climate forcing.more » « lessFree, publicly-accessible full text available June 11, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
The abundance and isotopic composition of noble gases dissolved in water have many applications in the geosciences. In recent years, new analytical techniques have opened the door to the use of high-precision measurements of noble gas isotopes as tracers for groundwater hydrology, oceanography, mantle geochemistry, and paleoclimatology. These analytical advances have brought about new measurements of solubility equilibrium isotope effects (SEIEs) in water (i.e., the relative solubilities of noble gas isotopes) and their sensitivities to the temperature and salinity. Here, we carry out a suite of classical molecular dynamics (MD) simulations and employ the theoretical method of quantum correction to estimate SEIEs for comparison with experimental observations. We find that classical MD simulations can accurately predict SEIEs for the isotopes of Ar, Kr, and Xe to order 0.01‰, on the scale of analytical uncertainty. However, MD simulations consistently overpredict the SEIEs of Ne and He by up to 40% of observed values. We carry out sensitivity tests at different temperatures, salinities, and pressures and employ different sets of interatomic potential parameters and water models. For all noble gas isotopes, the TIP4P water model is found to reproduce observed SEIEs more accurately than the SPC/E and TIP4P/ice models. Classical MD simulations also accurately capture the sign and approximate magnitude of temperature and salinity sensitivities of SEIEs for heavy noble gases. We find that experimental and modeled SEIEs generally follow an inverse-square mass dependence, which implies that the mean-square force experienced by a noble gas atom within a solvation shell is similar for all noble gases. This inverse-square mass proportionality is nearly exact for Ar, Kr, and Xe isotopes, but He and Ne exhibit a slightly weaker mass dependence. We hypothesize that the apparent dichotomy between He–Ne and Ar–Kr–Xe SEIEs may result from atomic size differences, whereby the smaller noble gases are more likely to spontaneously fit within cavities of water without breaking water–water H-bonds, thereby experiencing softer collisions during translation within a solvation shell. We further speculate that the overprediction of simulated He and Ne SEIEs may result from the neglection of higher-order quantum corrections or the overly stiff representation of van der Waals repulsion by the widely used Lennard-Jones 6–12 potential model. We suggest that new measurements of SEIEs of heavy and light noble gases may represent a novel set of constraints with which to refine hydrophobic solvation theories and optimize the set of interatomic potential models used in MD simulations of water and noble gases.more » « less
-
Gas exchange between the atmosphere and ocean interior profoundly impacts global climate and biogeochemistry. However, our understanding of the relevant physical processes remains limited by a scarcity of direct observations. Dissolved noble gases in the deep ocean are powerful tracers of physical air-sea interaction due to their chemical and biological inertness, yet their isotope ratios have remained underexplored. Here, we present high-precision noble gas isotope and elemental ratios from the deep North Atlantic (~32°N, 64°W) to evaluate gas exchange parameterizations using an ocean circulation model. The unprecedented precision of these data reveal deep-ocean undersaturation of heavy noble gases and isotopes resulting from cooling-driven air-to-sea gas transport associated with deep convection in the northern high latitudes. Our data also imply an underappreciated and large role for bubble-mediated gas exchange in the global air-sea transfer of sparingly soluble gases, including O 2 , N 2 , and SF 6 . Using noble gases to validate the physical representation of air-sea gas exchange in a model also provides a unique opportunity to distinguish physical from biogeochemical signals. As a case study, we compare dissolved N 2 /Ar measurements in the deep North Atlantic to physics-only model predictions, revealing excess N 2 from benthic denitrification in older deep waters (below 2.9 km). These data indicate that the rate of fixed N removal in the deep Northeastern Atlantic is at least three times higher than the global deep-ocean mean, suggesting tight coupling with organic carbon export and raising potential future implications for the marine N cycle.more » « less
An official website of the United States government
